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Abstract

Structural steel, when exposed to a uniform heat source at temperature T, will, in the absence of 
conductive, convective, or radiative heat loss, eventually reach the temperature T and remain at 
that temperature for the duration of the exposure.  We calculate the increase in temperature in 
support columns as a function of time by using the Fourier formula for heat transfer.  The 
formula gives rise to two equations for calculating the temperature in heated steel.  The first 
equation results from treating the formula as a difference equation, an iterative scheme that yields 
second-by-second changes in temperature.  The second equation results from treating the formula 
as a differential equation, the solution of which yields a formula for temperatures at arbitrary 
times into the period of a fire.  The difference formula approximates the integral formula very 
closely.  Intended as a tool for general heat calculations, the methods are illustrated for box 
columns and WF columns of varying dimensions and thicknesses.  The results of the calculation 
are then applied to the case of the World Trade Center fuel and office fires on the morning of 
September 11, 2001.  

In addition, an estimate of office fire duration based on burning times of individual items of office 
furniture is provided.  The temperature calculations, fire durations, and other evidence are 
brought together to demonstrate the extreme unliklihood of the core columns ever reaching critical 
temperatures in the World Trade Center on the morning of September 11, 2001. 

Introduction

When exposed to fire, a steel support column in a modern office tower will not reach the 
temperature of the fire instantaneously, but gradually, as a function of the thermal conductivity 
of the steel, its heat capacity, and the temperature of the fire.  Fourier’s law [1] provides a 
convenient tool to estimate the temperature increase in two types of column, a box-column and a 
WF (wide flange) column.  The illustration below shows the cross-section of a typical box 
column. 
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   Figure 1. Cross-section of a WTC box column

Fourier’s law provides an exact calculation of heat transferred to steel as a function of the 
difference between the temperature of a column directly exposed to the fire and the temperature 
inside it -- or on the other side of it.  (Alternatively, the calculation can be used for sheet or plate 
steel in various settings.)  For present purposes, the one-dimensional form of the equation [2] is 
sufficient, since heat is moving in essentially one direction only -- from the outside of a column 
inward.  

q = k A dT/s (i)

The meanings of the variables and parameters in the formula appear in the table below:

 m - meters thickness of material parameter

 C - degrees celsius temperature difference across material variable

 W/m ºC thermal conductivity of material parameter

m2 - area in sq. meters heat transfer area normal to source parameter

 W -Wattsheat transfer per unit timevariable

 units interpretation status

 s

 dT

 k

 A

 q

 symbol

Table 1. parameters and variables that appear in the formula
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Parameter values remain unchanged during a given calculation, whereas the values of variables 
may change continually.  

Equation (i) is implicitly a differential equation, since the unit of Watts can be expressed as 
Joules per second (dJ/dt), but it may equally be viewed as a difference equation (Dt), provided 
that an appropriate time-step is chosen.  The smaller the time step, the more accurate the result.  
In this case, the adoption of a one-second time step, while producing a slight overestimate of the 
temperature, yields a result that is much closer to the true temperature than would a one-minute 
time step, for example.  Since the unit of Watts is defined as Joules per second, we will 
accordingly reinterpret q as the number of Joules of heat transferred to the steel over a one-
second time period.  We therefore rewrite the formula in difference equation form:

Dq = k A (T1 - T2)/s (ii)

Here, I have written q as a heat increment Dq and I have replaced the symbol dT by the more 
explicit temperature difference (T1 - T2), where T1 is the temperature of the fire and T2 is the 
temperature of the air inside the column -- or on the other side of the steel.  In due course the 
variable T1 will be replaced by the burning temperature of jet-A fuel, ii.e. 800º C, approximately.

If we rewrite equation (ii) as a differential,

dq/dt = k A (T1 - T2)/s,

we find that the total heat absorbed by the steel over an arbitrary period of time is given by the 
indefinite integral,

Q = ! dq = ! k A (T1 - T2)/s dt

This integral will be solved in the next section in the context of a temperature-based (rather than 
heat-based) formula.  The following calculations are based on a test element of steel, the length of 
which varies as the thickness of steel being investigated.  The test element has dimensions of 1 
cm x 1 cm x the thickness of the column.  It represents what is going on throughout the column as 
it heats up.  
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Figure 2. A test element

If the fuel remains unexhausted, the temperature of the column is seen to rise gradually toward a 
peak temperature -- that of the adjacent fire itself.  However, if the fuel becomes exhausted, the 
peak temperature of the steel is reached at this point.  If another, lower-temperature fire invests 
the steel subsequently, it gradually cools to that temperature.

In the context of the WTC fires, failure to arrive at a calculated temperature sufficient to weaken 
the steel significantly (initiating collapse) would imply a signal failure of the actual fire to do so.  
In this spirit, one may list other assumptions behind the calculation that would tend to make it an 
overestimate:

1. a support column on a given floor is stripped of insulating wallboard and fire-resistant coatings 
throughout its length,

2. sufficient oxygen is always present to maintain the standard burning temperature of jet fuel 
throughout the burn period.

3. no heat is conducted away from any column by adjoining steel beams and adjacent columns.  
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4. Radiation of heat from fires within a given floor follow an inverse-linear, rather than inverse 
square law.

The purpose of the final assumption is to take into account heat reflected from any floor or 
ceiling elements still present following the entry of an aircraft into the affected floors.  In other 
words, by treating the fire as a two-dimensional phenomenon (in plan view), one has more than 
compensated for reflected heat by making all the heat generated by burning fuel (or office 
materials) available for radiation in a horizontal direction.  Obviously, an inverse linear law 
involves higher heat values at a distance than does an inverse square law. 
 
The Temperature Calculation

The following table presents the physical constants that will play a role in the analysis to follow.

800º C (open air)burning temperature of kerosene

7850 kg/m3specific gravity of steel

486 J/(kg x Cºspecific heat capacity of steel

46 W/mthermal conductivity of steel

550º C [3]critical point of steel

valueconstant

Table 2.  Physical constants relevant to the calculation

The critical point of steel is one of the most important factors entering the present analysis.  
Two such points are defined for structural steel.  One is a physical property related to 
crystallization within steel as it is heated during manufacture.  This version of the critical point 
varies from 900º C for pure iron, dropping to 724º C for low carbon steel, then climbing gradually 
to about 1100º C for high carbon steel. The other kind of critical point applies to the load-bearing 
performance of steel as it heats up in a building fire.  

The thermal conductivity of structural steel varies with the temperature.  At 0º C it is 54 W/m, 
decreasing linearly to approximately 28 W/m at 800º C. [4]  We use a low value for this 
parameter characteristic of steel at approximately 200º C.  Thus at temperatures below 200º C, 
our steel is conducting heat less rapidly than it should, while above it, our steel heats more 
rapidly.  The compensation point is reached at approximately 400º C.  The specific heat capacity 
figure above applies to steel at 20º C.  Above this temperature, the specific heat capacity 
increases in linear fashion to approximately 850 J/(kg x ºC). [4] Use of the constant value for heat 
capacity means that calculated temperatures are overestimated, in line with the policy spelled out 
at the end of the foregoing section
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In preparation for the calculation, all parameters and constants in the formula,

Dq = k A (T1 - T2)/s

must be replaced by appropriate values.  In particular, (T1 - T2) becomes (800 - T2), the 
temperature T1 being fixed.  The difference equation thus becomes

Dq = 46 x 0.0001 x (800 - T2)/0.0508,

where 800 is the temperature of the (jet-fuel) fire and the calculation is being made for 2” steel 
(length of test element is 2” = 0.0508 m).  The formula now simplifies to

Dq = 0.09055 x (800 - T2)

We make the formula iterative by converting the heat increment (Dq) into a temperature 
increment.  To do this, we must divide Dq by the product of the mass of the test element and the 
specific heat of steel.  (the amount of heat required to raise the temperature of the test element by 
one degree Kelvin -- or ºC).  The mass of the test element is simply its volume multiplied by the 
specific gravity of steel:

mass = 0.0508 x 10-4 x 7850 = 0.03988 kg

The temperature increase in the test element is then obtained by dividing Dq by 0.03988 x 486 = 
19.3817.  The variable T (replacing T2 for the duration) represents the temperature of the test 
element as the result of heat taken up by it.

DT = Dq/19.3817 º C

The heat equation has thus been transformed into an iterative temperature equation.  To get the 
next temperature T, we perform the addition shown in the second part of the following iterative 
scheme:

DT = 4.6719 x 10-3 x (800 - T)
(iii)

T = T + DT

The iterative calculation begins by assuming an initial temperature of 20º C in the test element.  
This figure is a nominal average daytime temperature for the period (September 11 2001) in 
question.  For the first second of the jet-fuel fire we have the following increase in temperature in 
the test element:
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DT = 4.67193 x 10-3 x (800 - 20)
 

        = 3.64411 º C

T = 20.0000 + 3.64411 = 23.64411º C

after one second the temperature in the steel has risen from 20.00º C to 23.6º C.   Throughout the 
calculation we will carry five decimal digits of precision, using the usual rounding formula. (1 to 4 
=> 0; 5 to 9 => 1)

The rise in temperature over the next second is carried out in similar fashion, with the 
temperature difference (800 - T) now reduced from 780º C to 776.3º C:

DT = 4.67193 x 10-3  x 776.35589

        = 3.62708º C

T = 23.64411 + 3.62708º C

     = 27.27119º C
  
Clearly, the rise in temperature over each subsequent second during the burning period will not 
exceed the increments just calculated, but fall steadily shorter, since (800 - T) is continually 
decreasing.  Table 3 (below) gives the temperatures of the test element over the first ten seconds, 
and at 10-second intervals after that, as calculated by this method:
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   331.2

   309.4

   258.8

   261.3

   237.5

   210.6

   182.3

   152.7

   121.6  

     89.7

     52.2

     48.7

     45.2

     41.6

     38.1

     34.5

     30.9

     27.3

     23.6

     20.0

110

100

 90

 80

 70

 60

 50

 40

 30

 20

10

 9

 8

 7

 6

 5

 4

 3

 2

 1

        temperature (º C)      time (sec)                  temperature (º C)      time (sec)         

Table 3. Temperatures for a box column of 2” thickness 

The exact formula to be used next arises from a solution of the integral equation implicit in 
formula (i).  However, to avoid going through the previous development, it is simplest to start 
with equation (iii), rewriting it as a differential and with the constant reverting to a temporary 
parameter c:    
    

dT(t) = c (800 - T(t))  (iv)

The boundary condition T(0) = 20 implies that the difference (800 - T(t)) has an initial value of 
780.  The unique solution of equation (iv) is a relatively simple exponential function:

 T(t) = 800 - exp(-ct + ln(780)),

If we substitute appropriate values for c, namely c = 0.004672, the equation becomes
 

T(t) = 800 - exp( -0.004672.t + 6.65929) (v)

and we may check that

T(0) = 800 - 780 = 20º C

while T(10) = 800 - exp( -0.04672 + 6.65929) 
          = 55.60635
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Under the earlier iterative scheme, we calculated a value of 55.7 for T(10) and the approximation 
is clearly a very good one, with the error in the (seconds-based) iterative method being less than 
0.2 percent.

We may now apply formula (v) to test elements of varying length (i.e., thickness of steel), to 
construct a simple temperature table for 2.0”, 1.0” and 0.5” steel.

797.1791.2773.0

791.2773.0717.2

773.0717.2545.8

717.2545.8354.7

545.8354.7210.7

0.5 inch  1 inch  2 inch

     5

     4

     3

     2

     1

 minutes

Table 4. Temperatures (º C) calculated with exact formula

The steel columns of the WTC

Two cases are treated in this section; steel columns in which the heat source is on both sides of 
the steel and columns in which the heat is applied to just one side.  For example, a box column 
that is heated on all sides still falls into the second category, since there is no fire inside the 
column.  On the other hand, the change in temperature in a WF-column (shaped like the letter 
capital H in cross section) that is heated from all sides can still be calculated if we treat the 
interior of the steel as an “other side.”  In other words, a WF-column made of 2” steel can be 
regarded as composed of two layers of 1” steel and the temperature calculation can be applied to 
one of these layers.  Thus the rise in temperature in a one-inch thick box column would be the 
same as the increase in temperature in a two-inch WF-column assuming, of course, that both are 
fully exposed to the same heat source.  The “effective thickness” of steel will be the thickness 
expressed in centimeters (cm) for box columns and the half-thickness (cm) for WF-columns.

We turn now to the north and south towers of the World Trade Center and examine the steel 
support columns involved in either crash.  The plane striking the north tower entered between 
floors 94 and 98.  The plane striking the south tower entered between floors 77 and 83.  The data 
in the table below pertain to floors 83 to 86 of either tower, as given in the NIST report. [5] 

Specifically, the thicknesses of the support columns, as given by the NIST report, appear in 
9



Table 6 below.  The columns are arranged in three concentric rectangles or tiers, an outer, a middle 
and an inner.  The thicker columns are concentrated in the outer rectangle, while thinner ones are 
all in the inner rectangles.  Under the headings “box columns” and “WF-columns” the entries refer 
to the thickness of steel used -- in inches.  For each column type and thickness, the table lists the 
number of columns of that type, their position within the core and their effective thickness (in 
centimeters), as explained above.

0.8

2.1

6.2

3.8

3.8

3.3

3.3

 6

16

16

inner

middle

outer

1

4

1

4

outer

middle

inner

outer

0.64”

1.62”

4.91”

       WF columns

1.50”

1.50”

1.31”

1.31”

    effective thickness (cm)       number         tier      

      box columns

Table 5.  Column types and effective thickness (floors 83 to 86)

The next table gives the temperatures reached within each type and thickness of core column at 
times t = 1, 2, 3, 4, and 5 minutes, as calculated by the exact formula arising from the differential 
equation.  In addition, temperatures reached in 79 seconds also appear there, as this is the only 
serious estimate of the duration of the jet-fuel fire.  
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      time

     496.0     736.3     772.1     799.8     800.0

    433.0     694.9     745.7     798.9     800.0

     356.9     626.5     694.9     794.3     800.0

     265.1     513.6     594.1     770.5     800.0

     189.7     403.3     475.3     709.7     800.0

     153.9     327.5     399.3     648.4     799.9

   5 minutes

   4 minutes

   3 minutes

   2 minutes

 79 seconds

   1 minute

        6.2        3.8        3.3        2.1        0.8  thickness:     
      (cm)

Table 6. Temperatures of support columns over time

As an indication of relative immunity to the threat of collapse, I have underlined table entries at 
and below which all temperatures are less than 550ºC.  There would be little danger that a 
support column below 550º C would fail.  At this temperature, structural steels retain 
approximately 60% of their bearing strength [4], a factor that is allowed for in structural steel 
design through redundancy of support members. The thickest column type, even after a five-
minute burn, would be immune to collapse, whereas the next thickest column type would be 
approaching 800º C.  The thinnest type of column would arrive at the fire temperature much 
earlier.  (But see next section.)

The following time considerations are also important.  They include an estimate of burning time 
for the jet fuel, as well as elapsed times between the plane strikes and the respective collapses: 
 

        [10]79 seconds

         [9]

         [8]

< 5 minutes

5 minutes

         [7]“few minutes”

         [6]  56 minutes

         [6]102 minutes

burning time

south tower

north tower

      sourcetime to collapselocation

Table 7. Time factors relevant to the calculation
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We shall address the jet-fuel burn-time estimates first.  The figure of “ less than five minutes” 
given by the FEMA assumes that all 10,000 gallons of jet fuel was “evenly spread across a single 
building floor,” forming “a pool that would be consumed by fire in less than 5 minutes."  The 
same assumption is made in a thermodynamic study [8] which arrives at a figure of 5 minutes.  
However, it would appear likely that a large proportion of the jet fuel was consumed in the initial 
fireballs resulting from impact.  The burn-time estimate by Torero et al. [10] is based on the 
assumption that 2/3 of the fuel remained as a pool fire.  The burning time of this fire, based on 
standard rates of consumption for a pool fire of that magnitude is 79 seconds. [10]  A guess by 
the NIST of a “few minutes” is mere arm-waving and can be discounted as essentially useless.  

Taking the most realistic burn-time figure of 79 seconds, we can see from Table 6 that only a 
support column of the very lightest steel could have gotten close to the ultimate fuel fire 
temperature of 800º C.  The heavier support columns are all well below their fire-induced failure 
point of 550º C.  The fact that no support columns could have failed either during the jet-fuel fire 
or immediately following the exhaustion of the fuel is consistent with the fact that the buildings 
did not collapse in that period.  Indeed, any column that was heated by the jet fuel fire would 
appear to have been cooling off after the first minute or two of impact.  Following this period, a 
number of office fires were burning on the floors affected by the aircraft impacts. 

The office fires

The temperature of “typical” office fires are the result of the burning rates of wood, paper, and 
various synthetics like plastic.  It is quite difficult to characterize office fires generally, since they 
can involve little fuel and poor ventilation (low temperatures) or abundant fuel and a plentiful 
supply of fresh air (high temperature) or indeed any combination of these factors.  In order to 
rate fireproofing materials, manufacturers use the standard fire curve [11], a simple equation that 
characterizes a rather hot fire that never goes out.  Indeed, one can see from the logarithmic term 
in the following equation, that the temperature of this fire increases without limit. 

T = 20 + 345 x log10(8t+1)

Here, T is temperature in degrees celsius and t is time in minutes.  

The fire-rating of an object is not the temperature at which it bursts into flame however, but the 
amount of time it takes to reach the ignition point for the standard fire curve just given.  The 
temperature of the standard fire must grow without limit in order to ensure that every material 
must, sooner or later, succumb to its internal heat and begin to burn freely.  This way, no material 
can ever receive an infinite fire rating value. 

There can be little doubt, however, that a typical office fire involves temperatures that climb 
rapidly at first, then at an increasingly slower rate as the fire reaches the maximum burning 
temperature of the materials involved -- as implied by the Fourier heat formula.  The rate then 
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slows as the fuel becomes exhausted.  Then it begins to fall.  A more realistic temperature curve 
would increase to a peak, then drop slowly to ambient levels.

There are data available on the burning characteristics of various items of office furniture.  For 
example a series of upholstered chair experiments [12] clearly demonstrate separate phases 
through which a piece of burning furniture may go.  Thus for the first 80 seconds, a “typical” 
upholstered armchair that was deliberately ignited in a test chamber entered a “spread” phase 
during which the fire generated up to 300 kW (kilowatts) of heat.  The next phase, 
“burnthrough,” lasted another 130 seconds while producing the same level of heat.  Meanwhile 
the synthetic materials in the armchair had been melting and forming a pool.  The “pool fire” 
phase lasted some 90 more seconds, during which the heat generated soared to approximately 
1000 kW, then declined rapidly to about 600 kW at the beginning of the final phase, “burnout.”  
It took the fire in the test armchair 180 seconds to die down from 600 kW to essentially 0 kW 
during this last phase.  The fire curve for the test armchair would therefore have the shape 
indicated and decline to 0 heat output in approximately 480 seconds, or eight minutes.  

Similar experiments with a burning (wooden) book case resulted in the end of the burnout phase 
before 10 minutes had passed. [13]

Most items of office furniture these days have large quantities of plastic (of one kind or another) 
in them.  Many are based on polypropylene, which melts between 320º C and 400º C. [14] In a 
series of experiments on office computers, keyboards and monitors were consumed in 25 
minutes, reaching a peak heat of 250 kW. [15]

Paper and paper products burn at approximately 230 to 250º C, but only when freely permeated 
by fresh air, as in the burning of a single sheet.  A stack or file of papers -- or a book for that 
matter, would tend to produce a low-temperature “smoldering” fire, one that could nevertheless 
last for several hours.

In order to assess the effect of the office fires on the WTC structural steel, the heat produced by 
burning furniture and other materials must be translated into temperature in an exposed support 
column.  In order to address this problem, we must use the conversion employed earlier in the 
Fourier heat equation.  How hot does one kg of steel become when supplied with Q kW of heat 
over a specified period of time?  As seen when we converted heat to temperature in the Fourier 
equation, one divides the heat by the mass of the steel (1 kg) multiplied by the specific heat (486 
J/kg x ºC).  The result is a figure that tells us the rate of increase in temperature per second.

Thus a 1000 kW fire (as in the case of peak heat for a burning armchair) applied to such a mass of 
steel, will cause a temperature increase of 1000/486 = 2.058º C per second.  A burning time of 90 
sec, as in the duration of peak heat for the burning armchair, would therefore produce a rise in 
temperature of 185.2º C from ambient, for a maximum temperature of 205.2º C in the kilogram of 
steel.
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In a fully exposed (outer) WF-column of thickness 12.5 cm the cross-sectional area is 
approximately 1533 cm2 and, when multiplied by its floor-to-ceiling length of 350 cm, we obtain 
an approximate volume for the column of 0.537 cu m.  Since one cu m of steel weighs 7850 kg the 
exposed portion of the column would have a mass of 4212.7 kg.  

Consider now the Sky Lounge on the 78th floor of WTC Tower 2 (the south tower).  
Undoubtedly it had many lounge chairs in it, although how many remained following the aircraft 
strike is unknown.  How many lounge chairs, all burning in the manner of the test just cited, 
would it take to heat just one column to 205.2º C?  The answer is 4212 lounge chairs, a figure 
which exceeds the probable number originally present by one order of magnitude.  If the kilogram 
of steel had already been heated by direct exposure to the fuel fire to a maximum temperature of 
230.9º C (Table 6), it’s ultimate temperature would be 230.9 + 185.2 = 416.1º C, again, well 
below the critical temperature.  It would take the same number of burning lounge chairs to heat 
just one of the 16 columns to this somewhat higher temperature.  This simple observation puts 
the interaction between burning office materials and structural steel into perspective.

At a more realistic level we recognize that there was no magical heat pipeline connecting each 
piece of burning furniture to its nearest core column.  Instead, the heat would be transported by a 
radiative process, with subsequent losses in radiative heat flux per square meter of exposed 
surface due to the inverse square law of radiation.  As mentioned in the list of assumption in the 
first section, one may substitute a (more intense) inverse linear law of radiation.  This more than 
compensates for heat reflected from ceilings or floors toward the outer core columns.  Thus if we 
imagine an armchair enclosed by a one-meter wide vertical cylinder, the flux through the walls of 
the cylinder at peak heat would be 1000 kW, say.  The flux per meter of cylinder perimeter 
would be 1000/p or 318.31 kW per meter of perimeter (as seen in plan view).  Ten meters away 
from the burning chair, the flux would drop to no more than 31.83 kW per meter of perimeter.  
Thus a burning lounge chair (which we may take as approximately equivalent to an upholstered 
armchair) ten meters from a fully exposed core column of the kind just analysed would raise the 
temperature in one kg of steel by 31.84/486 = 0.07º C per second.  Over the same period of time 
considered in the previous example, one kg of steel would become 5.9º C hotter than it was 
before.  Applying the same reasoning, it would take 4,212 lounge chairs burning at peak heat 10 
meters away from a single WF (outer) column to cause an increase of a mere 6º C .

There are 16 outer tier core columns of the WF-type just analysed.  In addition, there are eight 
box columns, four with an effective thickness of 3.3 cm and four with an effective thickness of 
3.8 cm.  This would give the box columns approximately half the mass of the WF columns and 
they would, under the same conditions, heat up at roughly twice the rate.  They would therefore 
experience a rise in temperature of approximately 12º C under the conditions examined in the 
previous paragraph. 

Summary and conclusion
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Of the types of office furnishings analysed, the upholstered armchairs (lounge chairs) produced 
the highest heats.  If we now replace each of the armchairs by a) an office partition, b) a desk, c) a 
bookcase, d) a computer workstation, or e) a filing cabinet full of paper according to the numbers 
actually present on a given (office) floor, it would surely be the case that 4,212 items is a large 
enough number to account for all such furnishings.  In other words, once an item of furniture is in 
flames it makes little difference what the item was, once we have replaced it by an item that 
produces as much or more heat during its burning period.  We may assume an average distance of 
ten meters of all such items from their (respective) nearest core columns.  This is obviously a 
drastic underestimate, given the sheer size of the office space on a single floor of either tower.  
Consequently, the rise in  temperature is a drastic overestimate, in line with the general approach 
adopted in this analysis.

Finally, the foregoing analyses have been applied to a single column.  Spread over the 24 (outer 
tier) core columns, the total heat thus produced could hardly produce a higher temperature than 
would be the case with all the heat concentrated on a single column.

Some office fires burn for a long time because they are spreading fires.  The WTC fires were 
different, however, in being initiated everywhere at approximately the same time, owing to the jet 
fuel spreading rapidly across the open areas (outside the core) like a miniature tidal wave.  The 
rapidly spreading pool fire would undoubtedly have invaded the core service area, as well, 
running along access corridors and into washrooms, open elevator doors, and down stairwells.  
There was little flammable material in the service area, being mainly concrete covered with tile, 
wallboard or carpeting, all fire-resistant. [5]

The great bulk of the heat produced by the office fires was therefore outside the core area.  As we 
have seen, most items of furniture capable of burning would have burst into flame within a 
minute of the impact.  According to the burn time figures we have already seen, most of these 
would have reached the burnout phase within half an hour.  The remaining fires would be 
smoldering fires that, collectively, would produce large volumes of characteristic thick, dark 
smoke.  

The crucial observation in all of this is that the core columns were all located inside the (core) 
service area.  The core, in plan view, had  a rectangular shape (87’ x 137’) and was divided  among 
the following functional structures:  1. elevators, 2. stairwells (3), 3. AC and heating ducts, 4. 
storage closets. 5. lavatories.  
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Figure 3. Plan of core service area on floors 83 to 86 of the south tower

Subsequent to fuel burnout, there would be little or no fire within the core area on the affected 
floors of either tower for the reasons just given.  This observation is borne out by the 18 
evacuees and fire fighters that passed through the core areas of the south tower by using the 
stairs, either down or up.  None reported excessive heat in the stairwells or corridors. [6]

The inner columns of the cores were the thinner ones that appear in Table 6.  Although the table 
shows them heating most rapidly toward the critical temperature, those are precisely the columns 
that were largely unaffected by the heat, being far from the office fires and cooling rapidly after 
the jet fuel pool fire (if they were heated at all).  The thicker columns on the core periphery, 
although closer to the office fires, would have been the slowest to heat up during the fuel fire, 
none of them having an internal temperature above 475º C and, of course, most (or all) of them 
well below this.  

As we have already seen with the lounge chair demonstration, even if all the heat produced by 
burning lounge chairs were fed directly and without loss to the outer core columns, they could 
not have produced enough heat to produce a failure in even one of them.  
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After approximately half an hour, the (open) office fires would have been dying out one by one, 
while smoldering fires continued to burn.  According to Table 7, the north tower collapsed 102 
minutes following impact of the aircraft, while the south tower collapsed in 56 minutes.  It 
follows that, prior to the respective collapses, the north tower had at least (approximately) 72 
minutes to cool, entering a regime of steadily falling temperatures.  The south tower had about 25 
minutes to cool in this sense.  As we have already seen, the temperatures in the core columns 
were well below critical in all cases, in any event.  The same observation applies to the distortion 
in the geometry of the support columns used by proponents of the pancake and related collaspse 
theories to explain the collapse of the twin towers. [16]  Any such distortion would have had 
ample time to enter a correction phase prior to the collapses, leading to the conclusion that no 
such pancaking could have taken place, even were pancaking floor pans able to induce 
instantaneous failure in the support columns.  

Although the points made above apply equally to both towers (except for the Sky Lounge in the 
south tower), the plane striking the north tower evidently struck core columns, causing an 
unknown amount of damage.  However, the fuselage of the plane that struck the south tower 
missed the core completely.  Its port wing, however, must have struck a corner column.   In the 
case of such an impact, damage to the column would have been slight, owing to a tendency for 
wing spars to fail abruptly (snap) when subjected to lateral forces which they were never 
designed to resist.  Wing spars, made from cast aluminum alloy, exert their strength almost 
entirely in a vertical direction, being configured (in cross section) as a relatively thin vertical 
rectangle.  

The study presented here may pave the way for more detailed analyses of the fuel and office 
fires in the twin towers.  It has provided techniques based on the Fourier heat equation to 
calculate temperatures in structural steel under varying fire conditions.  Further work is also 
needed on the thermal expansion of steel floor beams in order to assess changes in the (vertical) 
geometry of the towers prior to collapse.  
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Notes

North Tower blueprints will be found at at: 
http://911research.wtc7.net/wtc/evidence/plans/table.htm

Useful information on structural steel wiull be found at
http://www.answers.com/topic/structural-steel?cat=technology

APPENDIX

For those wishing to apply the heat equations used here to other aspects of the WTC fire 
investigation -- or indeed to any large fire in a steel-frame building -- I have laid out the methods 
in easy-to-follow steps below:

The heat equation in differential form,

dq/dt = k A (T1 - T2)/s,

may be converted into the following temperature equation, also in differential form:
 

dT/dt = k A (T1 - T2)/s M h,

where M is the mass of the test element, h is the specific heat (486 J/kg x ºC), and k is thermal 
conductivity (46 W/m ºC) of steel.  A dimensional analysis of the latter formula reveals that

J/(sec. m ºC) x m2 x ºC /(m kg) x kg ºC/J = ºC/sec,

so the answer is always given in degrees celsius per second.  The equation now becomes:

dT/dt = 46 x 0.0001 x (800 - T)/w M x 486, 

with M = w x 0.0001 x 7850 (kg/m3) = 0.785 w,
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so that 

dT/dt = 0.09465 x 0.0001 x (800 - T)/ w2 x 0.785

         = 0.12057 x 0.0001 x (800 - T)/ w2

Converting this equation to the form of (v), we obtain

dT(t) = c (800 - T(t)), 

where c = 1.2057 x 10-5/w2, w being the effective thickness of the steel involved.

T(t) = 800 - exp(-ct + ln(780))

and this takes different forms, depending on w, the effective thickness.

0.00310.062   6.2

0.00840.038   3.8

0.01110.033   3.3

0.02730.021   2.1

0.18840.008   0.8

    cw(m)w (cm)

The temperature equation for the massive outer WF core columns is therefore.

T(t) = 800 - exp(-0.00314t + ln(780))

or, in a slightly more useful form:

T(t) = 800 - exp(6.659 - 0.0031t)

Substituting any time t we like into this equation yields the temperature reached at that time. 

Thus the temperature reached after 300 seconds, for example, is given  by the following 
calculation:
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T(60) = 800 - exp(6.659 - 0.00314 x 300)

          = 800 - exp(6.659 -0.942)

          = 800 - exp(5.717)

          = 800 - 304.0

         = 496.0º C

21


